Likelihood based Goodness-of-fit tests for the Weibull and Extreme Value distributions

Meryam KRIT^{ab}, Olivier GAUDOIN^b, Min XIE^c, Emmanuel REMY^a

^aEDF R&D Industrial Risk Management Department ^bJean Kuntzmann Laboratory - Grenoble University ^cCity University of Hong Kong, Hong Kong

24th January 2013

Goodness-of-fit (GOF) tests Generalized Weibull distributions Likelihood based GOF tests Comparison with usual GOF tests Conclusion

Introduction

Risk management of industrial facilities, such as EDF's (major French electric utility) power plants, needs to accurately predict system reliability:

- Building of relevant probabilistic models
- Statistical inference of the developed models
- Validation of the fitted models using statistical criteria such as **goodness-of-fit** tests
- Comparison of the different competing models

Goodness-of-fit (GOF) tests Generalized Weibull distributions Likelihood based GOF tests Comparison with usual GOF tests Conclusion

Problem statement

Let X_1, \ldots, X_n be lifetimes of independent identical non repairable systems

Objective

To find a relevant model for the sample's distribution

Usual models: Exponential and Weibull distributions

Goodness-of-fit (GOF) tests Generalized Weibull distributions Likelihood based GOF tests Comparison with usual GOF tests Conclusion

Goodness-of-fit tests for the Weibull distribution

Goodness-of-fit (GOF) tests Generalized Weibull distributions Likelihood based GOF tests Comparison with usual GOF tests Conclusion

Goodness-of-fit tests for the Weibull distribution

Goodness-of-fit (GOF) tests

GOF test

Statistical test of H_0 : "The sample $X_1, ..., X_n$ comes from \mathcal{F} " vs H_1 : "The sample $X_1, ..., X_n$ does not come from \mathcal{F} ", where \mathcal{F} is a family of distributions

Goodness-of-fit (GOF) tests

GOF test

Statistical test of H_0 : "The sample $X_1, ..., X_n$ comes from \mathcal{F} " vs H_1 : "The sample $X_1, ..., X_n$ does not come from \mathcal{F} ", where \mathcal{F} is a family of distributions

In our case ${\mathcal F}$ will be the family of ${\textbf{Weibull}}$ distributions

Principle of the Likelihood based tests

- Embed the tested distribution in a larger parametric family and test a specific value of the parameter of this family
- Three tests: the score, Wald and likelihood ratio tests

Preliminary results and notations

 The Weibull distribution W(η, β) is defined by its cumulative distribution function:

$${\sf F}(x;\eta,eta)=1-\exp\left(-\left(rac{x}{\eta}
ight)^eta
ight),x\geq 0,\,\eta>0,\,eta>0$$

• For all *i*, the ln X_i have the extreme value distribution $\mathcal{EV}_1(\ln \eta, 1/\beta)$ with cumulative distribution function

$$G(y; \mu, \sigma) = 1 - e^{-e^{(y-\mu)/\sigma}}, \quad y \in \mathbb{R}$$

where $\mu = \ln \eta$ and $\sigma = 1/\beta > \mathbf{0}$

Preliminary results and notations

The Weibull distribution W(η, β) is defined by its cumulative distribution function:

$${\sf F}(x;\eta,eta)=1-\exp\left(-\left(rac{x}{\eta}
ight)^eta
ight),x\geq 0,\,\eta>0,\,eta>0$$

• For all *i*, the ln X_i have the extreme value distribution $\mathcal{EV}_1(\ln \eta, 1/\beta)$ with cumulative distribution function

$$G(y; \mu, \sigma) = 1 - e^{-e^{(y-\mu)/\sigma}}, \quad y \in \mathbb{R}$$

where $\mu = \ln \eta$ and $\sigma = 1/\beta > \mathbf{0}$

- Three methods for estimating the parameters η and β from an i.i.d. sample X₁,..., X_n:
 - The maximum likelihood estimators (MLEs) $\hat{\eta}_n$ and $\hat{\beta}_n$
 - The least squares estimators (LSEs) $\widetilde{\eta}_n$ and $\widetilde{\beta}_n$
 - The moment estimators (MEs) $\check{\eta}_n$ and $\check{\beta}_n$

Preliminary results and notations

• The MLEs $\hat{\eta}_n$ and $\hat{\beta}_n$ of η and β are solutions of the equations:

$$\begin{cases} \frac{n}{\hat{\beta}_n} + \sum_{i=1}^n \ln X_i - \frac{n}{\sum_{i=1}^n X_i^{\hat{\beta}_n}} \sum_{i=1}^n X_i^{\hat{\beta}_n} \ln X_i = 0\\ \hat{\eta}_n = \left(\frac{1}{n} \sum_{i=1}^n X_i^{\hat{\beta}_n}\right)^{1/\hat{\beta}_n} \end{cases}$$

Preliminary results and notations

• The Weibull probability plot:

 $(\ln X_i^*, \ln \left[-\ln \left(1 - \frac{i}{n}\right)\right]), i \in \{1, \dots, n-1\}$ $X_1^* \leq \dots \leq X_n^* \text{ are the order statistics of } X_1, \dots, X_n$ • The LSEs $\tilde{\eta}_n$ and $\tilde{\beta}_n$ are solutions of the equations: $\widetilde{\beta}_n = \frac{\sum_{i=1}^n (c_i - \overline{c})^2}{\sum_{i=1}^n (\ln X_i - \overline{\ln X})(c_i - \overline{c})} \text{ and } \ln \widetilde{\eta}_n = \overline{\ln X} - \frac{\overline{c}}{\widetilde{\beta}_n}$ where $c_i = \ln \left[-\ln \left(1 - \frac{1}{n}(i - 0.5)\right)\right], i \in \{1, \dots, n\}$

Preliminary results and notations

• The MEs $\breve{\eta}_n$ and $\breve{\beta}_n$ are solutions of the equations:

$$\breve{\beta}_n = \frac{\pi}{\sqrt{6}S} \text{ and } \ln \breve{\eta}_n = \overline{\ln X} + \frac{\gamma_E}{\breve{\beta}_n}$$

where $S = \left[\frac{1}{n-1}\sum_{i=1}^n (\ln X_i - \overline{\ln X})^2\right]^{1/2}$

Preliminary results and notations

• For all *i*, the
$$Y_i = \ln\left(\frac{X_i}{\eta}\right)^{\beta}$$
 have the extreme value distribution $\mathcal{EV}_1(0,1)$

Preliminary results and notations

• For all *i*, the
$$Y_i = \ln\left(\frac{X_i}{\eta}\right)^{\beta}$$
 have the extreme value distribution $\mathcal{EV}_1(0,1)$

• For all *i*, let $\hat{Y}_i = \ln\left(\frac{X_i}{\hat{\eta}_n}\right)^{\hat{\beta}_n}$, where $\hat{\eta}_n$ and $\hat{\beta}_n$ are the MLE of η and β . The distribution of $(\hat{Y}_1, \ldots, \hat{Y}_n)$ does not depend on η and β (Antle and Bain, 1969)

Preliminary results and notations

• For all *i*, let
$$\widetilde{Y}_i = \ln\left(\frac{X_i}{\widetilde{\eta}_n}\right)^{\beta_n}$$
, where $\widetilde{\eta}_n$ and $\widetilde{\beta}_n$ are the least squares estimators based on the WPP. The distribution of $(\widetilde{Y}_1, \ldots, \widetilde{Y}_n)$ does not depend on η and β (Liao Shimokawa, 1999)

 \sim

• For all *i*, let
$$\breve{Y}_i = \ln\left(\frac{X_i}{\breve{\eta}_n}\right)^{\breve{\beta}_n}$$
, where $\breve{\eta}_n$ and $\breve{\beta}_n$ are the moment estimators $\breve{\eta}_n$ and $\breve{\beta}_n$. The distribution of $(\breve{Y}_1, \ldots, \breve{Y}_n)$ does not depend on η and β

Preliminary results and notations

• For all *i*, let
$$\widetilde{Y}_i = \ln\left(\frac{X_i}{\widetilde{\eta}_n}\right)^{\beta_n}$$
, where $\widetilde{\eta}_n$ and $\widetilde{\beta}_n$ are the least squares estimators based on the WPP. The distribution of $(\widetilde{Y}_1, \ldots, \widetilde{Y}_n)$ does not depend on η and β (Liao Shimokawa, 1999)

• For all *i*, let
$$\check{Y}_i = \ln\left(\frac{X_i}{\check{\eta}_n}\right)^{\check{\beta}_n}$$
, where $\check{\eta}_n$ and $\check{\beta}_n$ are the moment estimators $\check{\eta}_n$ and $\check{\beta}_n$. The distribution of $(\check{Y}_1, \ldots, \check{Y}_n)$ does not depend on η and β

The fact that the distributions of the samples \hat{Y}_i , \tilde{Y}_i and \check{Y}_i are independent of η and β allows to build GOF tests statistics as functions of these samples

Reminder

In a previous study, the likelihood based tests for the Exponential distribution have the best performance among several known GOF tests

Reminder

In a previous study, the likelihood based tests for the Exponential distribution have the best performance among several known GOF tests

Principle of the Likelihood based tests

- Embed the Weibull distribution $W(\eta, \beta)$ in a Generalized Weibull parametric family $\mathcal{GW}(\theta, \eta, \beta)$
- Test wheither $\theta = \theta_0$ in the case where $\mathcal{GW}(\theta_0, \eta, \beta) = \mathcal{W}(\eta, \beta)$
- Likelihood based tests: the score, Wald and likelihood ratio tests

Generalized Weibull distributions \mathcal{GW}

Name	cdf	Characteristics
Exponentiated Weibull	$F_X(x) = \left[1 - e^{-(x/\eta)^{\beta}}\right]^{\theta}$	Weibull if $ heta=1$
$\mathcal{EW}(heta,\eta,eta)$	$ heta, \eta, eta > 0$	DHR if $\beta < 1, \theta < 1$
		IHR if $\beta > 1, \theta > 1$
		BT or IHR if $\beta > 1, \theta < 1$
		UBT or DHR if $eta < 1, heta > 1$
Generalized Gamma	$F_X(x) = \frac{1}{\Gamma(k)} \gamma(k, (x/\eta)^{\beta})$	Weibull if $k = 1$
$\mathcal{GG}(k,\eta,eta)$	$k,\eta,\beta>0,$	$ \text{if } \frac{1-\boldsymbol{k}\beta}{\beta-1} > 0, \begin{cases} BT \text{ if } \beta > 1 \\ UBT \text{ if } 0 < \beta < 1 \end{cases} $
	$\gamma(s,x) = \int_0^x v^{s-1} e^{-v} dv$	$otherwise egin{cases} I \dot{HR} ext{ if } eta > 1 \ DHR ext{ if } 0 < eta < 1 \end{cases}$
Additive Weibull	$F_{\mathbf{X}}(x) = 1 - e^{-\xi \mathbf{x} - (\frac{\mathbf{x}}{\eta})^{\beta}}$	Weibull if $\xi ightarrow 0$
$\mathcal{AW}(\xi,\eta,eta)$	$\xi,\eta,eta>0$	IHR if $\beta > 1$
		DHR if $\beta < 1$

Generalized Weibull distributions \mathcal{GW}

Name	cdf	Characteristics
Burr Generalized Weibull $\mathcal{BGW}(\lambda,\eta,eta)$	$F_{\mathbf{X}}(x) = 1 - \begin{bmatrix} 1 + \lambda(x/\eta)^{\beta} \end{bmatrix}^{-\frac{1}{\lambda}}$ $\lambda, \eta, \beta > 0$	Weibull if $\lambda \rightarrow 0$ DHR if $\beta < 1$ UBT if $\beta > 1$
Marshall-Olkin	$F_{\boldsymbol{X}}(\boldsymbol{x}) = 1 - \frac{\alpha \boldsymbol{e}^{-(\boldsymbol{x}/\eta)^{\beta}}}{1 - (1 - \alpha)\boldsymbol{e}^{-(\boldsymbol{x}/\eta)^{\beta}}}$	Weibull if $lpha=1$
Extended Weibull $\mathcal{MO}(lpha,\eta,eta)$	$lpha,\eta,eta > 0$	$\begin{array}{l} \text{IHR if } \alpha \geq 1, \ \beta \geq 1 \\ \text{DHR if } \alpha \leq 1, \ \beta \leq 1 \\ \text{other shapes} \end{array}$
$\begin{array}{l} Modified Weibull \\ \mathcal{MW}(\rho,\eta,\beta) \end{array}$	$F_{\mathbf{X}}(\mathbf{x}) = \underbrace{1 - e^{-(\frac{\mathbf{x}}{\eta})^{\beta} e^{\rho \mathbf{x}}}}_{\rho, \eta, \beta > 0}$	Weibull if $\rho = 0$ IHR if $\beta > 1$ BT if $0 < \beta < 1$
Power Generalized Weibull $\mathcal{PGW}(u,\eta,eta)$	$F_{\mathbf{X}}(x) = 1 - e^{1 - \left(1 + (x/\eta)^{\beta}\right)^{\frac{1}{\nu}}}$ $\nu, \eta, \beta > 0$	$ \begin{array}{l} \mbox{Weibull if } \nu = 1 \\ \mbox{IHR if } \beta > 1 \mbox{ and } \beta > \nu \\ \mbox{DHR if } 0 < \beta < 1 \mbox{ and } \beta \leq \nu \\ \mbox{BT if } 0 < \nu < \beta < 1 \\ \mbox{UBT if } \nu > \beta > 1 \end{array} $

The likelihood based GOF tests - Approach 1

Include Weibull $\mathcal{W}(\eta, \beta)$ in a Generalized Weibull distribution $\mathcal{GW}(\theta)$ with three parameters $\theta = (\theta, \eta, \beta)$ $H_0: "\theta = \theta_0"$ vs " $\theta \neq \theta_0 \Leftrightarrow H_0: "X \rightsquigarrow$ Weibull" vs "X $\not\rightsquigarrow$ Weibull"

- Let $\widetilde{\theta_n} = (\theta_0, \widetilde{\eta}_n(\theta_0), \widetilde{\beta}_n(\theta_0))$ where for a given value θ_0 of θ , $(\widetilde{\eta}_n(\theta_0), \widetilde{\beta}_n(\theta_0))$ is the MLE of (η, β)
- The likelihood function for θ is $L(\theta)$

• Let
$$\hat{\theta}_n = (\hat{\theta}_n, \hat{\eta}_n, \hat{\beta}_n) = \operatorname{argmax}_{\theta} L(\theta)$$

- $l(\theta) = \ln L(\theta)$ is the log-likelihood function
- The score vector is $U(\theta) = \nabla I(\theta)$
- The observed Fisher information matrix is denoted $I(\theta)$. Its inverse is denoted:

$$I(\theta)^{-1} = \left(\begin{array}{cc} I^{11}(\theta) & I^{12}(\theta) \\ I^{21}(\theta) & I^{22}(\theta) \end{array}\right)$$

The likelihood based GOF tests - Approach 1

- Choose a generalized Weibull family GW(θ, η, β).
 Let f_X(x; θ, η, β) be its pdf
- **2** Compute the likelihood $L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta, \eta, \beta)$ and the MLEs of θ , η and β : $\hat{\theta}_n$, $\hat{\eta}_n$ and $\hat{\beta}_n$
- Compute the score vector and the observed information 3x3 matrix: U(θ) and I(θ)

The likelihood based GOF tests - Approach 1

• The likelihood based statistics are:

• Wald:
$$W = \frac{(\hat{\theta}_n - \theta_0)^2}{I^{11}(\hat{\theta}_n)}$$

• The score:
$$S = U_1(\widetilde{\theta}_n)^2 I^{11}(\widetilde{\theta}_n)$$

• The likelihood ratio statistic:
$$LR = -2 \ln \left[\frac{L(\theta_n)}{L(\hat{\theta}_n)} \right]$$

The likelihood based GOF tests - Approach 1

The likelihood based statistics are:

• Wald:
$$W = \frac{(\hat{\theta}_n - \theta_0)^2}{I^{11}(\hat{\theta}_n)}$$

• The score:
$$S = U_1(\widetilde{\theta}_n)^2 I^{11}(\widetilde{\theta}_n)$$

• The likelihood ratio statistic:
$$LR = -2 \ln \left| \frac{L(\theta_n)}{L(\hat{\theta}_n)} \right|$$

Approach used in Mudholkar et al (1993, 1996), Bousquet et al (2000) and Caroni (2010)

The likelihood based GOF tests - Approach 1

• Under the null hypothesis H_0 , W, S and LR converge to the χ_1^2 distributions when n tends to infinity

This approach presents different drawbacks:

- The MLE of the three parameters distributions is not always easy and it usually requires large samples
- The distributions under H_0 of W, S and LR depend on the parameters in the case of small samples. So, the tests can not be applied to small samples
- The tests in this case are asymptotic. The rejection of Weibul hypothesis is done if the statistics are greater than the quantile of order (1α) of the χ_1^2 distribution

The likelihood based GOF tests - Approach 2

Include the Weibull distribution in a Generalized Weibull family and deduce the inclusion of the sample $Y_i = \ln(X_i/\eta)^{\beta}$, i = 1, ..., n, that follows the standard type I Extreme Value distribution $\mathcal{EV}_1(0, 1)$, in larger families with only one parameter

- The score and Fisher information are uni-dimensional: $I(\theta) = -\frac{\partial^2 I(\theta)}{\partial 2a}$ and $U(\theta) = \frac{\partial I(\theta)}{\partial a}$
- The likelihood based statistics are:
 - Wald: $W = I(\theta_0)(\hat{\theta}_n \theta_0)^2$
 - Score: $S = U^2(\theta_0)/I(\theta_0)$
 - Likelikhood ratio: $LR = -2 \ln \left[\frac{L(\theta_0)}{L(\hat{\theta}_n)} \right]$

The likelihood based GOF tests - Approach 2

- Choose a generalized Weibull family GW(θ, η, β).
 Let f_X(x; θ, η, β) be its pdf
- **2** Compute the pdf of $Y = \ln X$ when $\eta = \beta = 1$:

$$f_Y(y;\theta) = e^y f_X(e^y;\theta,1,1)$$

- Compute the likelihood $L(\theta) = \prod_{i=1}^{n} f_{Y}(y_{i}; \theta)$ and the MLE of θ , $\hat{\theta}_{n}$
- Output the score and observed information:

$$U(\theta) = \frac{\partial \ln L(\theta)}{\partial \theta}$$
$$I(\theta) = -\frac{\partial^2 \ln L(\theta)}{\partial \theta^2}$$

The likelihood based GOF tests - Approach 2

The likelihood based statistics are:

•
$$W = I(\theta_0)(\hat{\theta}_n - \theta_0)^2$$

• $S = \frac{U^2(\theta_0)}{I(\theta_0)}$
• $LR = -2 \ln \frac{L(\theta_0)}{L(\hat{\theta}_n)}$

- Replace Y_i by \hat{Y}_i . If T denotes a particular \mathcal{GW} model chosen, the corresponding statistics are denoted \hat{T}_w , \hat{T}_s and \hat{T}_l
- Do the same thing with \tilde{Y}_i and \check{Y}_i and derive \tilde{T}_w , \tilde{T}_s , \tilde{T}_l , \check{T}_w , \check{T}_s and \check{T}_l

Approach - 2: Example of the Exponentiated Weibull family

The Generalized Weibull family used is the Exponential Weibull distribution GW (θ, η, β) = EW(θ, η, β)

Approach - 2: Example of the Exponentiated Weibull family

- The Generalized Weibull family used is the Exponential Weibull distribution GW (θ, η, β) = EW(θ, η, β)
- **2** The pdf of Y when $\eta = \beta = 1$: $f_Y(y; \theta) = \theta (1 e^{-e^y})^{\theta 1} e^{y e^y}$

Approach - 2: Example of the Exponentiated Weibull family

- The Generalized Weibull family used is the Exponential Weibull distribution GW (θ, η, β) = EW(θ, η, β)
- **2** The pdf of Y when $\eta = \beta = 1$: $f_Y(y; \theta) = \theta (1 e^{-e^y})^{\theta 1} e^{y e^y}$
- **③** The null hypothesis H_0 : " $\theta = 1$ " vs H_1 : " $\theta \neq 1$ "

Approach - 2: Example of the Exponentiated Weibull family

- The Generalized Weibull family used is the Exponential Weibull distribution GW (θ, η, β) = EW(θ, η, β)
- **3** The pdf of Y when $\eta = \beta = 1$: $f_Y(y; \theta) = \theta (1 e^{-e^y})^{\theta 1} e^{y e^y}$
- **③** The null hypothesis H_0 : " $\theta = 1$ " vs H_1 : " $\theta \neq 1$ "
- The score, observed Fisher information and the MLE of θ : $U(\theta) = \frac{n}{\theta} + \sum_{i=1}^{n} \ln(1 - e^{-e^{Y_i}}), I(\theta) = \frac{n}{\theta^2}$ $\hat{\theta}_n = -n / \left(\sum_{i=1}^{n} \ln(1 - e^{-e^{Y_i}}) \right)$

Approach - 2: Example of the Exponentiated Weibull family

The likelihood based statistics are:

• Wald: $EW_w = I(1)(\hat{\theta}_n - 1)^2 = n(\hat{\theta}_n - 1)^2$

• Score:
$$EW_s = U^2(1)/I(1) = n \left(1 - \frac{1}{\hat{\theta}_n}\right)^2$$

• Likelihood ratio:
$$EW_l = -2 \ln \frac{L(1)}{L(\hat{\theta}_n)} = 2n \left(\ln \hat{\theta}_n - 1 + \frac{1}{\hat{\theta}_n} \right)$$

Approach - 2: Example of the Exponentiated Weibull family

The likelihood based statistics are:

• Wald: $EW_w = I(1)(\hat{\theta}_n - 1)^2 = n(\hat{\theta}_n - 1)^2$

• Score:
$$EW_s = U^2(1)/I(1) = n\left(1 - \frac{1}{\hat{\theta}_n}\right)^2$$

• Likelihood ratio:
$$EW_l = -2 \ln \frac{L(1)}{L(\hat{\theta}_n)} = 2n \left(\ln \hat{\theta}_n - 1 + \frac{1}{\hat{\theta}_n} \right)$$

• 9 tests statistics: \widehat{EW}_w , \widehat{EW}_s , \widehat{EW}_l , \widehat{EW}_w , \widehat{EW}_s , \widehat{EW}_l , \widetilde{EW}_l ,

- Rejecting the Weibull assumption at the significance level α if the statistic is greater than the corresponding quantile of order $1-\alpha$
- The quantiles are easily obtained by simulating samples X_1, \ldots, X_n from the exp(1)

- Rejecting the Weibull assumption at the significance level α if the statistic is greater than the corresponding quantile of order $1-\alpha$
- The quantiles are easily obtained by simulating samples X_1, \ldots, X_n from the exp(1)
- The suggested tests, unlike the classical ones, are exact tests that can be used for small samples

- Rejecting the Weibull assumption at the significance level α if the statistic is greater than the corresponding quantile of order 1α
- The quantiles are easily obtained by simulating samples X_1, \ldots, X_n from the exp(1)
- The suggested tests, unlike the classical ones, are exact tests that can be used for small samples
- In approach 2, unlike the first approach, the ML estimation is computed for only one parameter instead of three

- Rejecting the Weibull assumption at the significance level α if the statistic is greater than the corresponding quantile of order 1α
- The quantiles are easily obtained by simulating samples X_1, \ldots, X_n from the exp(1)
- The suggested tests, unlike the classical ones, are exact tests that can be used for small samples
- In approach 2, unlike the first approach, the ML estimation is computed for only one parameter instead of three
- For small samples, the distributions of W, S and LR statistics are independent of the Weibull parameters because the ML estimator is computed from the transformed samples \hat{Y}_i , \tilde{Y}_i and \check{Y}_i , i = 1, ..., n that are independent of Weibull parameters whatever the sample size is

Simulations

- 50000 simulated samples of size $n \in \{5, 10, 20, 50\}$
- $\alpha = 5\%$ is the significance level of all the tests
- Alternate distributions studied:
 - Increasing hazard rate IHR: $\mathcal{G}(3)$, $\mathcal{AW2}$, $\mathcal{EW3}$
 - Decreasing hazard rate DHR: $\mathcal{G}(0.5)$, $\mathcal{AW}1$, $\mathcal{EW}4$
 - Bathtub shaped hazard rate **BT**: $\mathcal{EW}1$, $\mathcal{GG}1$, $\mathcal{PGW}1$, $\mathcal{GG}3$
 - Upside-down bathtub shaped hazard rate **UBT**: $\mathcal{LN}(0.8)$, $\mathcal{IG}(3)$, $\mathcal{EW}2$, $\mathcal{GG}2$, $\mathcal{PGW}2$
- Comparison of the best of these tests with two usual GOF tests for the Weibull distribution: Anderson-Darling *AD* and Tiku-Singh *TS*

Power results for the tests based on the \mathcal{EW} , n = 50

altern.	ÊW _w	ÊŴ s	ÊŴĮ	EW _w	EW _s	ÊŴ J	EW _w	EW _s	EŴ	% rejection
exp(1)	5	5.1	5.1	5	5	5	5.1	5.1	5.1	5
W(0.5)	4.9	5	5	5.1	5.2	5.1	4.9	4.9	4.9	5
W(3)	5	5	5	5.1	5.1	5.1	5.1	5	5	5
G(3)	20	17	18.1	11.6	12.9	12.4	9.9	11.3	10.7	13.8
AW(2)	81.8	83.4	83	80.2	79.2	79.4	81	80.1	80.4	80.9
EW(3)	53	48.5	50.2	23.7	25.8	25	31.4	34.4	33.3	36.2
G(0.5)	14.6	17.4	16.6	11.7	10.9	11	11.9	11.1	11.3	12.9
$\mathcal{AW}(1)$	99.7	99.8	99.8	55.4	53.4	53.8	70.9	68.5	69.3	74.5
$\mathcal{EW}(4)$	41	46.9	45.2	1.9	1.6	1.6	2.3	1.9	2	16
$\mathcal{EW}(1)$	40.6	46.6	44.9	1.8	1.5	1.6	2.3	1.9	2	15.9
$\mathcal{GG}(1)$	69.5	73.6	72.4	29.9	28.3	28.7	31.1	29.3	29.8	43.6
$\mathcal{PGW}(1)$	23.9	27.7	26.6	14.9	13.9	14.2	14.9	13.9	14.1	18.2
$\mathcal{GG}(3)$	51.5	56.4	55	24.9	23.4	23.7	25.2	23.7	24.1	34.2
LN(0.8)	68.5	64.3	65.9	56.6	59.4	59.3	49.2	52.7	51.3	58.6
$\mathcal{IG}(3)$	94.6	93.2	93.8	95	95.7	95.5	88	89.7	89.1	92.7
EW(2)	38.3	33.8	35.7	23.2	25.4	24.6	20	22.4	21.5	27.2
$\mathcal{GG}(2)$	41.2	36.9	38.6	27.4	29.8	28.9	22.9	25.6	24.6	30.7
$\mathcal{PGW}(2)$	66.5	61.9	63.5	53.8	56.3	55.4	48	51.2	49.8	56.3

Power results for the tests based on the \mathcal{EW} , n = 20

altern.	ÊW _w	ÊŴ s	ÊŴĮ	EW _w	EW _s	EW	EŴ w	EŇ s	EŴ	% rejection
exp(1)	5	5	4.9	5	4.9	5	5	5	5	5
W(0.5)	5.3	5.3	5.3	5.2	5.1	5.1	5	4.9	5	5.1
W(3)	5	5	5	5.1	5	5	5	5	5	5
$\mathcal{G}(3)$	9.7	7.2	8	5.1	5.9	5.7	5	6	5.6	6.5
$\mathcal{AW}(2)$	49.9	53.7	52.5	46.4	44.5	45.3	48.4	46.5	47.2	48.3
$\mathcal{EW}(3)$	21.5	16.6	18.2	10.9	12.9	12.3	10.4	12.5	11.7	14.1
G(0.5)	8.6	10.8	10	9.2	8.5	8.8	8.7	8	8.2	9
$\mathcal{AW}(1)$	79.8	84.1	82.7	32.7	30.3	31.3	41.4	38.6	39.5	51.2
$\mathcal{EW}(4)$	13.7	18.2	16.6	4.6	4	4.2	4.3	3.7	3.9	8.2
$\mathcal{EW}(1)$	13.5	18	16.5	4.6	4	4.2	4.3	3.7	3.9	8.1
GG(1)	29.2	34.8	33	18	16.5	17.1	17.5	16	16.5	22.1
$\mathcal{PGW}(1)$	11.2	14.1	13.1	11	10.1	10.5	10.2	9.4	9.6	11
$\mathcal{GG}(3)$	21.4	26	24.5	15.9	14.6	15.2	15	13.5	13.9	17.8
LN(0.8)	29.8	23.8	25.8	16.5	19.3	18.5	15	18	16.9	20.4
$\mathcal{IG}(3)$	56.2	49.9	52.3	44.9	48.9	48.9	36.5	41.3	39.9	46.5
$\mathcal{EW}(2)$	15.7	11.9	13.2	7.6	9	8.6	7.2	8.9	8.3	10.1
$\mathcal{GG}(2)$	16.9	12.6	14.1	8.3	9.9	9.4	8	9.7	9.1	10.9
$\mathcal{PGW}(2)$	28.7	22.7	24.2	16.7	19.3	18.5	16.1	19	18	20.4

Comparison with usual GOF tests, n = 50

altern.	GG ¹ _W	GGs	GG1	\widehat{GG}_{I}^{2}	MW _w	PGWw	PGW _s	PGW	₽Ğ₩ _₩	AD	TS
exp(1)	5.1	5.1	5.1	5.5	5	4.9	4.9	5	5	5.6	4.9
W(0.5)	5.1	5	5	5.6	5	5	5	5	5	5.4	5
W(3)	5.1	5	5	5.3	5.3	5	5	5.1	4.9	5.3	5.1
$\mathcal{G}(3)$	18.2	16.8	17.2	21.1	0.4	18.6	15.6	16.7	28.9	14.6	18.9
$\mathcal{AW}(2)$	83.7	84.1	83.9	82.3	81.1	80.6	82.2	81.8	0	72.2	82.2
$\mathcal{EW}(3)$	50.7	49	49.6	56.3	0	49.6	44.8	46.7	66.8	40.8	55.2
G(0.5)	16.8	17.6	17.2	16.7	24.3	16.1	18.6	17.7	0.5	13.5	15.5
$\mathcal{AW}(1)$	99.8	99.8	99.8	99.8	100	99.9	99.9	99.9	0	99.9	99.6
$\mathcal{EW}(4)$	44.1	46.2	45.5	47.4	78.8	52.2	57	55.8	0	57.9	49.4
$\mathcal{EW}(1)$	43.7	45.3	44.6	47.5	78.9	51.8	56.6	55.4	0	58.1	49.8
$\mathcal{GG}(1)$	71.7	73.4	72.9	73.3	89.9	75.3	78.4	77.6	0	69.4	74.9
$\mathcal{PGW}(1)$	26.9	28.4	27.9	27	40.1	26.9	30.2	29.3	0.2	21.1	27.2
$\mathcal{GG}(3)$	54.9	56.7	56.2	55.8	73.2	56.3	60.6	59.4	0	48.3	56.2
LN(0.8)	66.9	65.3	65.8	72.5	0	65.5	60.9	62.7	82.5	56.5	72
$\mathcal{IG}(3)$	94.2	93.6	93.7	96.2	0	93.3	91.6	92.4	98.6	92.3	96.9
EW(2)	35.8	33.7	34.3	40.6	0	35.8	31.4	33.2	51.2	27.9	38.9
$\mathcal{GG}(2)$	38.8	37.1	37.7	44.1	0	39	34.5	36.3	55.6	30.1	42.9
$\mathcal{PGW}(2)$	64.6	62.5	63.1	69.9	0	63	58.1	59.9	79.7	56.9	71.6

Comparison with usual GOF tests, n = 20

altern.	GG ¹	GG1	GG1	\widehat{GG}_{i}^{2}	MW	PGW	PGW	PGW,	PĞW	AD	TS
exp(1)	5.1	5.1	5	5.7	5.1	4.8	4.8	4.8	5	5.6	5.1
W(0.5)	5.1	5.1	5.1	5.5	5.1	4.9	4.9	4.8	5.1	5.6	5.2
W(3)	5	5	5	5.6	5	5	4.9	5	5	5.6	5
G(3)	7.9	6.9	7.2	10.4	1.2	8.1	5.7	6.6	15.4	8.5	8.7
$\mathcal{AW}(2)$	53	54.1	53.7	49.6	53.4	46.7	52.7	51.9	0.8	42.1	49.5
EW(3)	17.9	16.2	16.7	22.4	0.3	18.4	13.6	15.3	32.2	16.5	19.9
G(0.5)	10	10.7	10.4	9.4	14.3	9.3	11.2	10.7	1.5	8.8	9.2
$\mathcal{AW}(1)$	81.5	83.3	82.7	82.3	95	85.8	88.7	88	0	89.7	87
$\mathcal{EW}(4)$	15.9	18	17.3	15.3	35.2	18.5	22.8	21.7	0	23.3	18.1
$\mathcal{EW}(1)$	16.3	17.9	17.3	16.9	35	17.8	22.4	21.2	0.1	23.7	17.6
$\mathcal{GG}(1)$	32.2	34.5	33.8	30.7	49.5	33.7	38.7	37.3	0	31.7	34.1
$\mathcal{PGW}(1)$	13.2	14.5	14.1	11.6	19.7	12.8	15.5	14.7	0.7	11.7	12.6
$\mathcal{GG}(3)$	24.1	26.1	25.4	21.9	35.9	24.1	28.2	27.1	0.2	21.6	24
LN(0.8)	25.3	22.8	23.5	30.5	0.1	25.7	19.7	21.9	42.7	22.8	28.8
$\mathcal{IG}(3)$	52.1	48.9	49.8	60.9	0	51.6	43.6	46.8	71.1	50.5	59.7
EW(2)	13	11.7	12.2	15.7	0.6	13.5	9.6	10.9	24.1	12.1	14.4
$\mathcal{GG}(2)$	13.5	12.1	12.5	17.1	0.5	14.5	10.3	11.8	25.9	12.9	15.7
$\mathcal{PGW}(2)$	23.9	21.7	22.5	29.8	0.2	24.9	18.8	21.1	41.1	23.2	28.6

Results and discussion

- The performance of the tests is tightly linked to the hazard rate's shape of the tested alternate
- Some tests are non-consistent for some kinds of alternatives
- Generally, we recommend
 - For IHR alternates: \widehat{GG}_{I}^{2}
 - For DHR and BT alternates: \widehat{MW}_{w}
 - For UBT alternates: $P\breve{G}W_w$